Xiangyu Zhang MEGVII Research

Advances in AutoML

2

Search for Detection Systems

Advances in AutoML

1

2

Search for Detection Systems

Introduction

✤ AutoML

- A meta-approach to generate machine learning systems \bigcirc
- Automatically search vs. manually design \bigcirc

AutoML for Deep Learning

- Neural architecture search (NAS)
- Hyper-parameters turning \bigcirc
- Loss function \bigcirc
- Data augmentation \bigcirc
- Activation function \bigcirc
- Backpropagation

. . .

Revolution of AutoML

Revolution of AutoML (cont' d)

Revolution of AutoML (cont' d)

✤ Literature

○ 200+ since 2017

Search								Follow Us
utoML Freiburg	Home	Blog	AutoML ~	AAD ~	Analysis ~	Book	Events	Team & Partn

LITERATURE ON NEURAL ARCHITECTURE SEARCH

The following list considers papers related to neural architecture search. It is by no means a complete list. If you miss a paper on the list, please let us know.

Update (Dec 2018): Since the list is already quite long by now, we will highlight papers accepted at conferences and journals in the future. This should hopefully provide some guidance towards high-quality papers.

- Architecture Search (and Hyperparameter Optimization):
 - Surrogate-Assisted Evolutionary Deep Learning Using an End-to-End Random Forest-based Performance Predictor (Sun et al. 2019; accepted by IEEE Transactions on Evolutionary Computation) https://ieeexplore.ieee.org/document/8744404
 - Adaptive Genomic Evolution of Neural Network Topologies (AGENT) for State-to-Action Mapping in Autonomous Agents (Behjat et al. 2019; accepted and presented in ICRA 2019) https://arxiv.org/abs/1903.07107
 - Densely Connected Search Space for More Flexible Neural Architecture Search (Fang et al. 2019) https://arxiv.org/abs/1906.09607
 - SwiftNet: Using Graph Propagation as Meta-knowledge to Search Highly Representative Neural Architectures (Cheng et al. 2019) https://arxiv.org/abs/1906.08305
 - Transfer NAS: Knowledge Transfer between Search Spaces with Transformer Agents (Borsos et al. 2019) https://arxiv.org/abs/1906.08102
 - XNAS: Neural Architecture Search with Expert Advice (Nayman et al. 2019) https://arxiv.org/abs/1906.08031
 - A Study of the Learning Progress in Neural Architecture Search Techniques (Singh et al. 2019)

Revolution of AutoML (cont' d)

✤ Literature

○ 200+ since 2017

Past 5 years 🔻
^^

Recent Advances in AutoML (1)

Surpassing handcraft models

NASNet \bigcirc

- RNN controller + policy gradient \bigcirc
- Flexible search space \bigcirc
- Proxy task needed Ο

Zoph et al. Learning Transferable Architectures for Scalable Image Recognition Zoph et al. Neural Architecture Search with Reinforcement Learning

Recent Advances in AutoML (2)

Search on the target task

o MnasNet

Keynotes

- Search directly on ImageNet
- Platform aware search
- Very costly (thousands of TPU-days)

Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile

Recent Advances in AutoML (3)

Weight Sharing for Efficient Search & Evaluation

- ENAS \bigcirc
- **One-shot methods** \bigcirc

Keynotes

- Super network
- Finetuning & inference only instead of retraining \bigcirc
- Inconsistency in super net evaluation Ο

Pham et al. Efficient Neural Architecture Search via Parameter Sharing Bender et al. Understanding and Simplifying One-Shot Architecture Search Guo et al. Single Path One-Shot Neural Architecture Search with Uniform Sampling

Recent Advances in AutoML (4)

- Gradient-based methods
 - DARTS \bigcirc
 - SNAS, FBNet, ProxylessNAS, ... \bigcirc

Keynotes

- Joint optimization of architectures and weights
- Weight sharing implied \bigcirc
- Sometimes less flexible \bigcirc

Liu et al. DARTS: Differentiable Architecture Search Xie et al. SNAS: Stochastic Neural Architecture Search Cai et al. ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware Wu et al. FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search

Recent Advances in AutoML (5)

Performance Predictor

- Neural Architecture Optimization \bigcirc
- ChamNet \bigcirc

- Architecture encoding \bigcirc
- Performance prediction models \bigcirc
- Cold start problem Ο

50 Luo et al. Neural Architecture Optimization Dai et al. ChamNet: Towards Efficient Network Design through Platform-Aware Model Adaptation

Recent Advances in AutoML (6)

- Hardware-aware Search
 - Search with complexity budget
 - Quantization friendly \bigcirc
 - Energy-aware search \bigcirc

. . .

- Complexity-aware loss & reward \bigcirc
- Multi-target search
- Device in the loop \bigcirc

Wu et al. Mixed Precision Quantization of ConvNets via Differentiable Neural Architecture Search V eniat et al. Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks Wang et al. HAQ: Hardware-Aware Automated Quantization with Mixed Precision

Recent Advances in AutoML (7)

AutoML in Model Pruning

- NetAdapt
- AMC \bigcirc
- MetaPruning \bigcirc

Keynotes

- Search for the pruned architecture \bigcirc
- Hyper-parameters like channels, spatial size, ...

Yang et al. NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications He et al. AMC: AutoML for Model Compression and Acceleration on Mobile Devices Liu et al. MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning

Model Compression by Human Labor Consuming, Sub-optimal

Automated, Higher Compression Rate, Faster

Recent Advances in AutoML (8)

Handcraft + NAS

- Human-expert guided search (IRLAS) \bigcirc
- Boosting existing handcraft models (EfficientNet, \bigcirc MobileNet v3)

- Very competitive performance \bigcirc
- Efficient
- Search space may be restricted Ο

Howard et al. Searching for MobileNetV3 Tan et al. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks Guo et al. IRLAS: Inverse Reinforcement Learning for Architecture Search

Recent Advances in AutoML (9)

Various Tasks

- **Object Detection** \bigcirc
- Semantic Segmentation \bigcirc
- Super-resolution \bigcirc
- Face Recognition \bigcirc

. . . .

Liu et al. Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation Chu et al. Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search Ramachandra et al. Searching for Activation Functions Alber et al. Backprop Evolution

Not only NAS, search for everything!

- Activation function \bigcirc
- Loss function \bigcirc

. . .

- Data augmentation \bigcirc
- Backpropagation \bigcirc

Recent Advances in AutoML (10)

Rethinking the Effectiveness of NAS

- Random search \bigcirc
- Random wire network \bigcirc

- Reproducibility \bigcirc
- Search algorithm or search space? \bigcirc
- Baselines \bigcirc

Search Space

Continuous & Discrete

Unstructured & Structured

Cell Block Meta-Architecture

Li et al. Random Search and Reproducibility for Neural Architecture Search Xie et al. Exploring Randomly Wired Neural Networks for Image Recognition

Summary: Trends and Challenges

Trends

- Efficient & high-performance algorithm \bigcirc
- Flexible search space \bigcirc
- **Device-aware optimization** \bigcirc
- Multi-task / Multi-target search \bigcirc

- Trade-offs between efficiency, performance and flexibility \bigcirc
- Search space matters! \bigcirc
- Fair benchmarks \bigcirc
- Pipeline search

Efficiency

Performance

Advances in AutoML

Search for Detection Systems

- Components to search
 - Image preprocessing \bigcirc
 - Backbone \bigcirc
 - Feature fusion \bigcirc
 - Detection head & loss function \bigcirc

- Components to search
 - Image preprocessing Ο
 - Backbone \bigcirc

. . .

- Feature fusion \bigcirc
- Detection head & loss function \bigcirc

- Components to search
 - Image preprocessing \bigcirc
 - Backbone Ο
 - Feature fusion \bigcirc
 - **Detection head & loss function** \bigcirc

- Components to search
 - Image preprocessing \bigcirc
 - Backbone \bigcirc
 - **Feature fusion** Ο
 - Detection head & loss function \bigcirc

. . .

- Components to search
 - Image preprocessing \bigcirc
 - Backbone \bigcirc

. . .

- Feature fusion \bigcirc
- **Detection head & loss function** 0

Search for Detection Systems

Chen et al. DetNAS: Backbone Search for Object Detection

Augmentation **Feature Fusion**

Challenges of Backbone Search

- Similar to general NAS, but ...
 - Controller & evaluator loop
 - Performance evaluation is very slow
- Detection backbone evaluation involves a costly pipeline
 - ImageNet pretraining \bigcirc
 - Finetuning on the detection dataset (e.g. COCO) \bigcirc
 - Evaluation on the validation set \bigcirc

Related Work: Single Path One-shot NAS

Decoupled weight training and architecture optimization

$$w_{a} = \operatorname{argmin} \mathcal{L}_{\operatorname{train}} \left(\mathcal{N}(a, w) \right),$$

$$a^{*} = \operatorname{argmax} \operatorname{ACC}_{\operatorname{val}} \left(\mathcal{N}(a, w_{a}) \right),$$

$$a \in \mathcal{A}$$

$$W_{\mathcal{A}} = \underset{W}{\operatorname{argmin}} \mathbb{E}_{a \sim \Gamma(\mathcal{A})} \left[\mathcal{L}_{\operatorname{train}}(\mathcal{N}(a, W(a)$$

Guo et al. Single Path One-Shot Neural Architecture Search with Uniform Sampling

))],

Pipeline

Single-pass approach

• Pretrain and finetune super net only once

Step3: Evolutionary search on the trained supernet

Search Space

Single path super net

- 20 (small) or 40 (large) choice blocks \bigcirc
- 4 candidates for each choice block \bigcirc
- Search space size: 4²⁰ or 4⁴⁰ \bigcirc

Search Algorithm

Evolutionary search

- Sample & reuse the weights from super net \bigcirc
- Very efficient \bigcirc

MEGUI町视

Algorithm 1 Evolutionary Architecture Search

Input: supernet weights W_A , population size P, architecture constraints C, max iteration T, validation dataset D_{val} **Output**: the architecture with highest validation accuracy under architecture constraints

1: $P_0 := Initialize_population(P, C);$ 2: n := P/2;# Crossover number 3: m := P/2;# Mutation number 4: prob := 0.1;# Probability to mutate 5: Topk := \emptyset ; 6: **for** i = 1 : T **do** $ACC_{i-1} := Inference(W_{\mathcal{A}}, D_{val}, P_{i-1});$ 7: Topk := $Update_Topk(Topk, P_{i-1}, ACC_{i-1});$ 8: $P_{crossover} := Crossover(Topk, n, C);$ $P_{mutation} := Mutation(Topk, m, prob, C);$ 10: $P_i := P_{crossover} \cup P_{mutation};$ 11: 12: **end for** 13: **return** the entry with highest accuracy in Topk;

Results

High performance

- Significant improvements over commonly used backbones (e.g. ResNet 50) with fewer FLOPs \bigcirc
- Best classification backbones may be suboptimal for object detection \bigcirc

ruble 2. main result comparisons.								
	ImageNe	et Classification	Object Detection with FPN on COCO					
Backbone	FLOPs	Accuracy	mAP	AP_{50}	AP_{75}	AP_s	AP_m	AP_l
ResNet-50	3.8G	76.15	37.3	58.2	40.8	21.0	40.2	49.4
ShuffleNetv2-40	1.3G	77.18	39.2	60.8	42.4	23.6	42.3	52.2
ResNet-101	7.6G	77.37	40.0	61.4	43.7	23.8	43.1	52.2
DetNASNet	1.3G	77.20	40.0	61.5	43.6	23.3	42.5	53.8
DetNASNet (3.8)	3.8G	78.44	42.0	63.9	45.8	24.9	45.1	56.8

Table 2. Main result comparisons

Table 3: Ablation studies.

	COCO	(mmAP, %)	VOC	(mAP, %)
)	FPN	RetinaNet	FPN	RetinaNet
	34.8	32.1	80.6	79.4
_	35.1	31.2	78.5	76.5
	35.9	32.8	81.1	79.9
	36.4	33.3	81.5	80.1

Results

- Search cost
 - Super nets greatly speed up search progress!

Table 5: Computation cost for each step on COCO.

		Supernet pre-training	Supernet fine-tuning	Search on the supernet
	DotNAS	3×10^5 iterations	9×10^4 iterations	20×50 models
DeinAS	8 GPUs on 1.5 days	8 GPUs on 1.5 days	20 GPUs on 1 day	
`	.1 11			

* For the small search space, GPUs are GTX 1080Ti . For the large search space, GPUs are Tesla V100.

Search for Detection Systems

Ghaisi et al. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

Feature Fusion Modules

Multi-scale feature fusion

• Used in state-of-the-art detectors (e.g. SSD, FPN, SNIP, FCOS, ...)

Automatic search vs. manual design

First Glance

Searched architecture

Very different from handcraft structures \bigcirc

Search Space

- Stacking repeated FPN blocks
- For each FPN block, N different merging cells
- For each merging cell, 4-step generations

Search Algorithm

Controller

- **RNN-based controller** \bigcirc
- Search with Proximal Policy Optimization (PPO) \bigcirc

Candidate evaluation

Training a light-weight proxy task \bigcirc

Architectures During Search

Many downsamples and upsamples

(c) NAS-FPN / 9.9 AP

(f) NAS-FPN / 16.8 AP

State-of-the-art speed/AP trade-off

Search for Detection Systems

Backbone

Zoph et al. Learning Data Augmentation Strategies for Object Detection

Feature Fusion

Augmentation

Auto-Augment for Detection

Data Augmentation for Object Detection

Augmentation pool

- Color distortions \bigcirc
- Geometric transforms \bigcirc
- Random noise (e.g. cutout, drop block, ...) \bigcirc
- Mix-up \bigcirc

. . .

Search Space Design

- Mainly follows AutoAugment
- Randomly sampling from K sub-policies
- For each sub-policy, N image transforms
- Each image transform selected from 22 operations:
 - Color operations \bigcirc
 - Geometric operations \bigcirc
 - Bounding box operations \bigcirc

Cubuk et al. AutoAugment: Learning Augmentation Strategies from Data

Search Space Design (cont' d)

-

Sub-policy

2

3

Batch 1

Batch 2

Sub-policy 1. (Color, 0.2, 8), (Rotate, 0.8, 10) Sub-policy 2. (BBox_Only_ShearY, 0.8, 5)

Batch 3

Batch 4

Sub-policy 3. (SolarizeAdd, 0.6, 8), (Brightness, 0.8, 10) Sub-policy 4. (ShearY, 0.6, 10), (BBox_Only_Equalize, 0.6, 8) Sub-policy 5. (Equalize, 0.6, 10), (TranslateX, 0.2, 2)

Search Algorithm

Very similar to NAS-FPN

Controller

- **RNN-based controller** \bigcirc
- Search with Proximal Policy Optimization (PPO)

Evaluation

- A small proxy dataset
- Short-time training \bigcirc

Results

Significantly outperforms previous state-of-the-arts

Backbone	Baseline	Our result	Difference
ResNet-50	36.7	39.0	+2.3
ResNet-101	38.8	40.4	+1.6
ResNet-200	39.9	42.1	+2.2

Method	mAP
baseline	36.7
baseline + DropBlock [13]	38.4
Augmentation policy with color operations	37.5
+ geometric operations	38.6
+ bbox-only operations	39.0

Architecture	Change	# Scales	mAP	mAP_{S}	$\mathrm{mAP}_{\mathrm{M}}$	$mAP_{\rm L}$
MegDet [32]		multiple	50.5	-	-	-
	baseline [14]	1	47.0	30.6	50.9	61.3
AmoebaNet + NAS-FPN	+ learned augmentation	1	48.6	32.0	53.4	62.7
	+ \uparrow anchors, \uparrow image size	1	50.7	34.2	55.5	64.5
	1	I	I	I		

Analysis

Better regularization

Future Work

More search dimensions

E.g. loss, anchor boxes, assign rules, post-processing, ... \bigcirc

Reducing search cost

Joint optimization

